

VIGNAN'S INSTITUTE OF MANAGEMENT AND TECHNOLOGY FOR WOMEN

${\bf COMPUTER\ SCIENCE\ AND\ ENGINEERING\ (AI\&ML)}$

COURSE STRUCTURE - VR24

II B.Tech. - I Semester

S.No.	Course Code	Course		Т	P	Credits
1	ML301PC	Software Engineering			0	3
2	ML302PC	Data Structures		0	0	3
3	ML303PC	Computer Organization and Architecture		0	0	3
4	MA304BS	Mathematical and Statistical Foundations		1	0	4
5	ML305PC	Operating Systems		0	0	3
6	ML306PC	Introduction to Data Structures Lab		0	2	1
7	ML307PC	Operating Systems Lab		0	2	1
8	ML308PC	Software Engineering Lab		0	2	1
9	ML309PC	Node JS/ React JS/ Django	0	0	2	1
10	*MC310	Constitution of India	3	0	0	0
		Total	18	0	10	20

II B.Tech. - II Semester

S.No.	Course Code	Course		Т	P	Credits
1	ML401PC	Discrete Mathematics		0	0	3
2	ML402PC	Automata Theory and Compiler Design		0	0	3
3	ML403PC	Database Management Systems		0	0	3
4	ML404PC	Introduction to Artificial Intelligence		0	0	3
5	ML405PC	Object Oriented Programming through Java		0	0	3
6	ML406PC	Database Management Systems Lab		0	2	1
7	ML407PC	Java Programming Lab		0	2	1
8	ML408PC	Real-time Research Project/Field-Based Research Project		0	4	2
9	ML409PC	Prolog/ Lisp/ Pyswip	0	0	2	1
10	*MC410	Gender Sensitization Lab	0	0	2	0
		Total	15	0	12	20

Note: L-Theory T-Tutorial P-Practical C-Credits

ML401PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML)

II Year - II Semester

L T P C

3 0 0 3

DISCRETE MATHEMATICS

Prerequisites: "Basic algebra and logical reasoning"

Course Objectives:

- Introduces elementary discrete mathematics for computer science and engineering.
- Topics include formal logic notation, methods of proof, induction, sets, relations algebraic structures, elementary graph theory, permutations and combinations counting principles; recurrence relations and generating functions.
- Analyze and solve counting problems on finite and discrete structures. Develop problem-solving skills using combinatorial techniques.
- Describe and manipulate sequences. Understand and apply recurrence relation and sequence operations.
- Apply graph theory in solving computing problems. Utilize graph algorithms for optimization and network-based applications.

Course Outcomes: The student will learn.

- Understand and construct precise mathematical proofs.
- Apply logic and set theory to formulate precise statements.
- Analyse and solve counting problems on finite and discrete structures.
- Describe and manipulate sequences.
- Apply graph theory in solving computing problems

UNIT - I

Mathematical logic: Introduction, Statements and Notation, Connectives, Normal Forms, Theory of Inference for the Statement Calculus, The Predicate Calculus, Inference Theory of the Predicate Calculus.

UNIT - II

Set theory: Introduction, Basic Concepts of Set Theory, Representation of Discrete Structures, Relations and Ordering, Functions.

UNIT - III

Algebraic Structures: Introduction, Algebraic Systems, Semi groups and Monoids, Lattices as Partially Ordered Sets, Boolean Algebra.

UNIT - IV

Elementary Combinatorics: Basics of Counting, Combinations and Permutations, Enumeration of Combinations and Permutations, Enumerating Combinations and Permutations with Repetitions, Enumerating Permutation with Constrained Repetitions,

Binomial Coefficient, The Binomial and Multinomial Theorems, The Principle of Exclusion.

UNIT - V

Graph Theory: Basic Concepts, Isomorphism and Subgraphs, Trees and their Properties, Spanning Trees, Directed Trees, Binary Trees, Planar Graphs, Euler's Formula, Multigraphs and Euler Circuits, Hamiltonian Graphs, Chromatic Numbers, The Four-Color Problem.

TEXT BOOKS:

- 1. Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe 1. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed.

- 1. Discrete and Combinatorial Mathematics an applied introduction: Ralph.P. Grimald Pearson education, 5th edition.
- 2. Discrete Mathematical Structures: Thomas Kosy, Tata McGraw Hill publishing co.

ML402PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML)

II Year - II Semester

L T P C

3 0 0 3

AUTOMATA THEORY AND COMPILER DESIGN

Prerequisites: Discrete mathematics (sets, functions, and relations)

Course Objectives:

- To introduce the fundamental concepts of formal languages, grammars and automata theory.
- To understand deterministic and non-deterministic machines and the differences between decidability and undecidability.
- Introduce the major concepts of language translation and compiler design and impart the knowledge of practical skills necessary for constructing a compiler.
- Topics include phases of compiler, parsing, syntax directed translation, type checking use of symbol tables, intermediate code generation
- Topics include skills using lex tools and design LR parsers

Course Outcomes: The student will learn.

- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to distinguish between decidability and undecidability.
- Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.
- Acquire skills in using lex tool and design LR parsers.

UNIT - I

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.

Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA

UNIT - II

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular Expressions.

Pumping Lemma for Regular Languages: Statement of the pumping lemma, Applications

of the Pumping Lemma.

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, Leftmost and Rightmost Derivations, the Language of a Grammar, Parse Trees, Ambiguity in Grammars, and Languages.

UNIT - III

Push Down Automata: Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA and CFG's, Acceptance by final state

Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, The language of a Turing machine

Undecidability: Undecidability, A Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable Problems about Turing Machines.

UNIT - IV

Introduction: The structure of a compiler,

Lexical Analysis: The Role of the Lexical Analyzer, Input Buffering, Recognition of Tokens, The Lexical- Analyzer Generator Lex,

Syntax Analysis: Introduction, Context-Free Grammars, Writing a Grammar, Top-Down Parsing, Bottom- Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR Parsers

UNIT - V

Syntax-Directed Translation: Syntax-Directed Definitions, Evaluation Orders for SDD's, Syntax-Directed Translation Schemes, Implementing L-Attributed SDD's.

Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code

Run-Time Environments: Stack Allocation of Space, Access to Nonlocal Data on the Stack, Heap Management.

TEXT BOOKS:

- 1. Introduction to Automata Theory, Languages, and Computation, 3nd Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

- 1. Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry D. Ullman, 2nd Edition, Pearson.
- 2. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R, Pearson.
- 3. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 4. Lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly Compiler Construction, Kenneth C. Louden, Thomson. Course Technology.

ML403PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML) II Year - II Semester L T P C 3 0 0 3

DATABASE MANAGEMENT SYSTEMS

Prerequisites: A course on "Data Structures".

Course Objectives:

- To understand the basic concepts and the applications of database systems.
- To master the basics of SQL and construct queries using SQL.
- Topics include data models, database design, relational model.
- Relational algebra, transaction control, concurrency control, storage structures and access techniques.
- To provide an understanding of data storage techniques, file organization, and indexing methods to enhance data retrieval efficiency and performance in database systems.

Course Outcomes: The student will learn.

- Gain knowledge of fundamentals of DBMS, database design and normal forms
- Master the basics of SQL for retrieval and management of data.
- Be acquainted with the basics of transaction processing and concurrency control.
- Familiarity with database storage structures and access techniques.
- Analyze different indexing methods, including primary, secondary, and clustered indexes.

UNIT - I

Database System Applications: A Historical Perspective, File Systems versus a DBMS, the Data Model, Levels of Abstraction in a DBMS, Data Independence, Structure of a DBMS

Introduction to Database Design: Database Design and ER Diagrams, Entities, Attributes, and Entity Sets, Relationships and Relationship Sets, Additional Features of the ER Model, Conceptual Design with the ER Model

UNIT - II

Introduction to the Relational Model: Integrity constraint over relations, enforcing integrity constraints, querying relational data, logical database design, introduction to views, destroying/altering tables, and views.

Relational Algebra, Tuple relational Calculus, Domain relational calculus.

UNIT - III

SQL: QUERIES, CONSTRAINTS, TRIGGERS: form of basic SQL query, UNION, INTERSECT, and EXCEPT, Nested Queries, aggregation operators, NULL values,

complex integrity constraints in SQL, triggers and active databases.

Schema Refinement: Problems caused by redundancy, decompositions, problems related to decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

UNIT - IV

Transaction Concept, Transaction State, Implementation of Atomicity and Durability, Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing for serializability, Lock Based Protocols, Timestamp Based Protocols, Validation- Based Protocols, Multiple Granularity, Recovery and Atomicity, Log-Based Recovery, Recovery with Concurrent Transactions.

UNIT - V

Data on External Storage, File Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes, Index data Structures, Hash Based Indexing, Tree based Indexing, Comparison of File Organizations, Indexes- Intuitions for tree Indexes, Indexed Sequential Access Methods (ISAM), B+ Trees: A Dynamic Index Structure.

TEXT BOOKS:

- 1. Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition.
- 2. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata McGraw Hill

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

ML404PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML)

II Year - II Semester

L T P C

3 0 0 3

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

Prerequisite: Knowledge on Data Structures.

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning.
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.
- To understand the supervised learnings Vs. Learning Decision trees.

Course Outcomes: The student will learn.

- Learn the distinction between optimal reasoning Vs human like reasoning and formulate an efficient problem space for a problem expressed in natural language.
 Also select a search algorithm for a problem and estimate its time and space complexities.
- Apply AI techniques to solve problems of game playing, theorem proving, and machine learning.
- Learn different knowledge representation techniques.
- Understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- Comprehend the applications of Probabilistic Reasoning and Bayesian Networks. Analyze Supervised Learning Vs. Learning Decision Trees

UNIT - I

Introduction to AI - Intelligent Agents, Problem-Solving Agents,

Searching for Solutions - Breadth-first search, Depth-first search, Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces.

UNIT - II

Games - Optimal Decisions in Games, Alpha–Beta Pruning, Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Knowledge-Based Agents, Logic- Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses.

UNIT - III

First-Order Logic - Syntax and Semantics of First-Order Logic, Using First Order Logic, Knowledge Engineering in First-Order Logic. Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution. **Knowledge Representation:** Ontological Engineering, Categories and Objects, Events.

UNIT - IV

Planning - Definition of Classical Planning, Algorithms for Planning with State Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches. Hierarchical Planning.

UNIT - V

Probabilistic Reasoning:

Acting under Uncertainty, Basic Probability Notation Bayes' Rule and Its Use, Probabilistic Reasoning, Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First- Order Probability.

TEXT BOOKS:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

ML405PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML)

L T P C

II Year - II Semester

3 0 0 3

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Prerequisites: Knowledge of basic programming concepts

Course Objectives:

- To Understand the basic object-oriented programming concepts and apply them in problem solving.
- To Illustrate inheritance concepts for reusing the program.
- To Demonstrate multitasking by using multiple threads and event handling
- Develop data-centric applications using JDBC.
- To Understand the basics of java console and GUI based programming

Course Outcomes: The student will learn.

- Demonstrate the behavior of programs involving the basic programming constructs like control structures, constructors, string handling and garbage collection.
- Demonstrate the implementation of inheritance (multilevel, hierarchical and multiple) by using extend and implement keywords
- Use multithreading concepts to develop inter process communication.
- Understand the process of graphical user interface design and implementation using AWT or swings.
- Develop applets that interact abundantly with the client environment and deploy on the server.

UNIT - I

Object oriented thinking and Java Basics- Need for oop paradigm, summary of oop concepts, coping with complexity, abstraction mechanisms. A way of viewing world – Agents, responsibility, messages, methods, History of Java, Java buzzwords, data types, variables, scope and lifetime of variables, arrays, operators, expressions, control statements, type conversion and casting, simple java program, concepts of classes, objects, constructors, methods, access control, this keyword, garbage collection, overloading methods and constructors, method binding, inheritance, overriding and exceptions, parameter passing, recursion, nested and inner classes, exploring string class.

UNIT - II

Inheritance, Packages and Interfaces – Hierarchical abstractions, Base class object, subclass, subtype, substitutability, forms of inheritance specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of

inheritance. Member access rules, super uses, using final with inheritance, polymorphism-method overriding, abstract classes, the Object class. Defining, Creating and Accessing a Package, Understanding CLASSPATH, importing packages, differences between classes and interfaces, defining an interface, implementing interface, applying interfaces, variables in interface and extending interfaces. Exploring java.io.

UNIT - III

Exception handling and Multithreading-- Concepts of exception handling, benefits of exception handling, Termination or resumptive models, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions, creating own exception subclasses. String handling, exploring java.util. Differences between multithreading and multitasking, thread life cycle, creating threads, thread priorities, synchronizing threads, inter thread communication, thread groups, daemon threads. Enumerations, autoboxing, annotations, generics.

UNIT - IV

Event Handling: Events, Event sources, Event classes, Event Listeners, Delegation event model, handling mouse and keyboard events, Adapter classes. The AWT class hierarchy, user interface components- labels, button, canvas, scrollbars, text components, check box, checkbox groups, choices, lists panels – scrollpane, dialogs, menubar, graphics, layout manager – layout manager types – border, grid, flow, card and grid bag.

UNIT - V

Applets – Concepts of Applets, differences between applets and applications, life cycle of an applet, types of applets, creating applets, passing parameters to applets.

Swing – Introduction, limitations of AWT, MVC architecture, components, containers, exploring swing- JApplet, JFrame and JComponent, Icons and Labels, text fields, buttons – The JButton class, Check boxes, Radio buttons, Combo boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

- 1. Java the complete reference, 7th edition, Herbert schildt, TMH.
- 2. Understanding OOP with Java, updated edition, T. Budd, Pearson education.

- 1. An Introduction to programming and OO design using Java, J.Nino and F.A. Hosch, John wiley & sons.
- 2. An Introduction to OOP, third edition, T. Budd, Pearson education.
- 3. Introduction to Java programming, Y. Daniel Liang, Pearson education.
- 4. An introduction to Java programming and object-oriented application development, R.A. Johnson-Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay.S. Horstmann and Gary Cornell, eighth Edition, Pearson Education.

ML406PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML)

L T P C

II Year - II Semester

0 0 2 1

DATABASE MANAGEMENT SYSTEMS LAB

Course Objectives:

- Introducing ER data model, database design and normalization
- Learn SQL basics for data definition and data manipulation
- To Understanding DDL and DML Commands
- To understand How the Creation of insert trigger, delete trigger, update trigger
- Usage of Cursors and Procedures.

Course Outcomes: The student will learn.

- Design database schema for a given application and apply normalization
- Acquire skills in using SQL commands for data definition and data manipulation.
- Develop solutions for all DDL and DML commands.
- Develop solutions for database applications using triggers.
- Develop solutions for database applications using procedures and cursors.

List of Experiments:

- 1. Concept design with E-R Model
- 2. Relational Model
- 3. Normalization
- 4. Practicing DDL commands
- 5. Practicing DML commands
- 6. A. Querying (using ANY, ALL, UNION, INTERSECT, JOIN, Constraints etc.)
- 7. B. Nested, Correlated subqueries
- 8. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.
- 9. Triggers (Creation of insert trigger, delete trigger, update trigger)
- 10. Procedures
- 11. Usage of Cursors

TEXT BOOKS:

- 1. Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata McGraw Hill, 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

ML407PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML) II Year - II Semester L T P C 0 0 2 1

JAVA PROGRAMMING LAB

Course Objectives:

- To understand OOP principles.
- To understand the Exception Handling mechanism.
- To understand Java collection framework.
- To understand multithreaded programming.
- To understand swing controls in Java.

Course Outcomes: The student will learn.

- Able to write programs for solving real world problems using Java OOP principles.
- Able to write programs using Exceptional Handling approach.
- Able to write multi-threaded applications.
- Able to write GUI programs using swing controls in Java.
- Able to write programs for Event Handlers.

List of Experiments:

- 1. Use Eclipse or Net bean platform and acquaint yourself with the various menus. Create a test project, add a test class, and run it. See how you can use auto suggestions, auto fill. Try code formatter and code refactoring like renaming variables, methods, and classes. Try debug step by step with a small program of about 10 to 15 lines which contains at least one if else condition and a for loop.
- 2. Write a Java program to demonstrate the OOP principles. [i.e., Encapsulation, Inheritance, Polymorphism and Abstraction]
- 3. Write a Java program to handle checked and unchecked exceptions. Also, demonstrate the usage of custom exceptions in real time scenario.
- 4. Write a Java program on Random Access File class to perform different read and write operations.
- 5. Write a Java program to demonstrate the working of different collection classes. [Use package structure to store multiple classes].
- 6. Write a program to synchronize the threads acting on the same object. [Consider the example of any reservations like railway, bus, movie ticket booking, etc.]
- 7. Write a program to perform CRUD operations on the student table in a database using JDBC.
- 8. Write a Java program that works as a simple calculator. Use a grid layout to arrange buttons for the digits and for the +, -,*, % operations. Add a text field to display the result. Handle any possible exceptions like divided by zero.
- 9. Write a Java program that handles all mouse events and shows the event name at the

center of the window when a mouse event is fired. [Use Adapter classes]

- 1. Java for Programmers, P. J. Deitel and H. M. Deitel, 10th Edition Pearson education.
- 2. Thinking in Java, Bruce Eckel, Pearson Education.
- 3. Java Programming, D. S. Malik and P. S. Nair, Cengage Learning.
- 4. Core Java, Volume 1, 9th edition, Cay S. Horstmann and G Cornell, Pearson.

ML409PC Vignan's Institute of Management and Technology for Women VR24 An Autonomous Institution

B.Tech. CSE(AI&ML)

L T P C

0 0 2 1

II Year - II Semester

PROLOG/LISP/PYSWIP

Course Objectives:

- To introduce the fundamental concepts of logic programming using Prolog.
- To develop problem-solving skills by implementing AI-based search and constraint-solving techniques.
- To explore the use of Prolog for real-world applications such as medical diagnosis and optimization problems.
- To understand recursion, list manipulation, and tree-based data structures in Prolog.
- To analyze the advantages and limitations of Prolog constructs such as green and red cuts.

Course Outcomes:

- Implement basic Prolog facts, predicates, and queries to represent knowledge.
- Develop Prolog programs for AI-related problems, including pathfinding and optimization.
- Solve constraint satisfaction problems like the N-Queens and Traveling Salesman Problem using Prolog.
- Utilize Prolog's list-handling capabilities for data manipulation and search operations.
- Design and implement Prolog-based solutions for real-world applications such as diagnosis and decision-making.

List of Programs:

- 1. Write simple facts for following:
 - a. Ram likes mango.
 - b. Seema is a girl.
 - c. Bill likes Cindy.
 - d. Rose is red.
 - e. E. John owns gold
- 2. Write predicates one converts centigrade temperatures to Fahrenheit, the other checks if a temperature is below freezing.
- 3. Write a program to solve the Monkey Banana problem

- 4. WAP in turbo prolog for medical diagnosis and shows the advantages and disadvantages of green and red cuts.
- 5. Write a program to solve the 4-Queen problem.
- 6. Write a program to solve traveling salesman problems.
- 7. Write a program to solve water jug problems using Prolog.
- 8. Write simple Prolog functions such as the following. Take into account lists which are too short. -- remove the Nth item from the list. -- insert as the Nth item.
- 9. Assume the prolog predicate gt(A, B) is true when A is greater than B. Use this predicate to define the predicate addLeaf(Tree, X, NewTree) which is true if NewTree is the Tree produced by adding the item X in a leaf node. Tree and NewTree are binary search trees. The empty tree is represented by the atom nil.
- 10. Write a Prolog predicate, countLists(Alist, Ne, Nl), using accumulators, that is true when Nl is the number of items that are listed at the top level of Alist and Ne is the number of empty lists. Suggestion: First try to count the lists, or empty lists, then modify by adding the other counter.
- 11. Define a predicate memCount(AList,Blist,Count) that is true if Alist occurs Count times within Blist. Define without using an accumulator. Use "not" as defined in utilities.pro, to make similar cases are unique, or else you may get more than one count as an answer.

REFERENCE BOOKS:

1. PROLOG: Programming for Artificial Intelligence, 3e, by BRATKO, WILEY

VR24

B.Tech. L T P C II Year - II Semester 3 0 0 0

Gender Sensitization Lab (Common to ECE, CSE(AIML))

Course Objectives:

- To develop students' sensibility with regard to issues of gender in contemporary India
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Course Outcomes: The student will learn

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labor and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that
 provide protection and relief to women, the textbook will empower students to
 understand and respond to gender violence.

UNIT-I:

Introduction: Definition of Gender-Basic Gender Concepts and Terminology-Exploring Attitudes towards Gender-Construction of Gender-Socialization: Making Women, Making Men - Preparing for Womanhood. Growing up Male. First lessons in Cas

UNIT - II:

Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences- Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT - III:

Division and Valuation of Labour-Housework: The Invisible Labor- "My Mother doesn't Work." "Share the Load."-Work: Its Politics and Economics -Fact and Fiction. Unrecognized and Unaccounted work. -Gender Development Issues-Gender, Governance and Sustainable Development-Gender and Human Rights-Gender and Mainstreaming

UNIT-IV:

The Concept of Violence-Types of Gender-based Violence-Gender-based Violence from a Human Rights Perspective-Sexual Harassment: Say No!-Sexual Harassment, not Eveteasing- Coping with Everyday Harassment- Further Reading: "Chupulu". Domestic Violence: Speaking OutIs Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Thinking about Sexual Violence Blaming the Victim-"I Fought for my Life...."

UNIT-V:

Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Rosa Parks The Brave Heart.

Text Book:

1. **ESSENTIAL READING:** The Textbook, "Towards a World of Equals: A Bilingual Textbook on Gender" written by A.Suneetha, Uma Bhrugubanda, DuggiralaVasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu published by Telugu Akademi, Telangana Government in 2015.